Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Molecules ; 28(8)2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2299701

ABSTRACT

The development of very efficient and safe non-viral vectors, constituted mainly by cationic lipids bearing multiple charges, is a landmark for in vivo gene-based medicine. To understand the effect of the hydrophobic chain's length, we here report the synthesis, and the chemico-physical and biological characterization, of a new term of the homologous series of hydrogenated gemini bispyridinium surfactants, the 1,1'-bis-dodecyl-2,2'-hexane-1,6-diyl-bispyridinium chloride (GP12_6). Moreover, we have collected and compared the thermodynamic micellization parameters (cmc, changes in enthalpy, free energy, and entropy of micellization) obtained by isothermal titration calorimetry (ITC) experiments for hydrogenated surfactants GP12_6 and GP16_6, and for the partially fluorinated ones, FGPn (where n is the spacer length). The data obtained for GP12_6 by EMSA, MTT, transient transfection assays, and AFM imaging show that in this class of compounds, the gene delivery ability strictly depends on the spacer length but barely on the hydrophobic tail length. CD spectra have been shown to be a useful tool to verify the formation of lipoplexes due to the presence of a "tail" in the 288-320 nm region attributed to a chiroptical feature named ψ-phase. Ellipsometric measurements suggest that FGP6 and FGP8 (showing a very interesting gene delivery activity, when formulated with DOPE) act in a very similar way, and dissimilar from FGP4, exactly as in the case of transfection, and confirm the hypothesis suggested by previously obtained thermodynamic data about the requirement of a proper length of the spacer to allow the molecule to form a sort of molecular tong able to intercalate DNA.


Subject(s)
Chlorides , Hexanes , Gene Transfer Techniques , Surface-Active Agents/chemistry
2.
Pharm Res ; 40(1): 1-2, 2023 01.
Article in English | MEDLINE | ID: covidwho-2269841
3.
Hum Gene Ther ; 33(17-18): 893-912, 2022 09.
Article in English | MEDLINE | ID: covidwho-2271618

ABSTRACT

The prospect of gene therapy for inherited and acquired respiratory disease has energized the research community since the 1980s, with cystic fibrosis, as a monogenic disorder, driving early efforts to develop effective strategies. The fact that there are still no approved gene therapy products for the lung, despite many early phase clinical trials, illustrates the scale of the challenge: In the 1990s, first-generation non-viral and viral vector systems demonstrated proof-of-concept but low efficacy. Since then, there has been steady progress toward improved vectors with the capacity to overcome at least some of the formidable barriers presented by the lung. In addition, the inclusion of features such as codon optimization and promoters providing long-term expression have improved the expression characteristics of therapeutic transgenes. Early approaches were based on gene addition, where a new DNA copy of a gene is introduced to complement a genetic mutation: however, the advent of RNA-based products that can directly express a therapeutic protein or manipulate gene expression, together with the expanding range of tools for gene editing, has stimulated the development of alternative approaches. This review discusses the range of vector systems being evaluated for lung delivery; the variety of cargoes they deliver, including DNA, antisense oligonucleotides, messenger RNA (mRNA), small interfering RNA (siRNA), and peptide nucleic acids; and exemplifies progress in selected respiratory disease indications.


Subject(s)
Peptide Nucleic Acids , DNA , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/genetics , Oligonucleotides, Antisense , RNA, Messenger , RNA, Small Interfering/genetics
4.
Chembiochem ; 24(9): e202200801, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2242957

ABSTRACT

Messenger RNA (mRNA) is being used as part of an emerging class of biotherapeutics with great promise for preventing and treating a wide range of diseases, as well as encoding programmable nucleases for genome editing. However, mRNA's low stability and immunogenicity, as well as the impermeability of the cell membrane to mRNA greatly limit mRNA's potential for therapeutic use. Lipid nanoparticles (LNPs) are currently one of the most extensively studied nanocarriers for mRNA delivery and have recently been clinically approved for developing mRNA-based vaccines to prevent COVID-19. In this review, we summarize the latest advances in designing ionizable lipids and formulating LNPs for intracellular and tissue-targeted mRNA delivery. Furthermore, we discuss the progress of intracellular mRNA delivery for spatiotemporally controlled CRISPR/Cas9 genome editing by using LNPs. Finally, we provide a perspective on the future of LNP-based mRNA delivery for CRISPR/Cas9 genome editing and the treatment of genetic disorders.


Subject(s)
COVID-19 , Nanoparticles , Humans , Gene Editing , CRISPR-Cas Systems/genetics , Gene Transfer Techniques , RNA, Messenger/genetics , COVID-19/genetics
5.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2163434

ABSTRACT

Gene therapy is widely used to treat incurable disorders and has become a routine procedure in clinical practice. Since viruses can exhibit specific tropisms, effectively penetrate the cell, and are easy to use, most gene therapy approaches are based on viral delivery of genetic material. However, viral vectors have some disadvantages, such as immune response and cytotoxicity induced by a disturbance of cell metabolism, including miRNA pathways that are an important part of transcription regulation. Therefore, any viral-based gene therapy approach involves the evaluation of side effects and safety. It is possible for such effects to be caused either by the viral vectors themselves or by the delivered genetic material. Many gene therapy techniques use non-coding RNA delivery as an effective agent for gene expression regulation, with the risk of cellular miRNA pathways being affected due to the nature of the non-coding RNAs. This review describes the effect of viral vector entry and non-coding RNA delivery by these vectors on miRNA signaling pathways.


Subject(s)
MicroRNAs , Viruses , MicroRNAs/metabolism , Genetic Vectors/genetics , Genetic Therapy/methods , Viruses/genetics , Genes, Viral , Gene Transfer Techniques
6.
J Nanobiotechnology ; 20(1): 363, 2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-2139309

ABSTRACT

BACKGROUND: With the success of recent non-viral gene delivery-based COVID-19 vaccines, nanovectors have gained some public acceptance and come to the forefront of advanced therapies. Unfortunately, the relatively low ability of the vectors to overcome cellular barriers adversely affects their effectiveness. Scientists have thus been striving to develop ever more effective gene delivery vectors, but the results are still far from satisfactory. Therefore, developing novel strategies is probably the only way forward to bring about genuine change. Herein, we devise a brand-new gene delivery strategy to boost dramatically the transfection efficiency of two gold standard nucleic acid (NA)/polymer nanoparticles (polyplexes) in vitro. RESULTS: We conceived a device to generate milli-to-nanoscale vibrational cues as a function of the frequency set, and deliver vertical uniaxial displacements to adherent cells in culture. A short-lived high-frequency vibrational load (t = 5 min, f = 1,000 Hz) caused abrupt and extensive plasmalemma outgrowths but was safe for cells as neither cell proliferation rate nor viability was affected. Cells took about 1 hr to revert to quasi-naïve morphology through plasma membrane remodeling. In turn, this eventually triggered the mechano-activated clathrin-mediated endocytic pathway and made cells more apt to internalize polyplexes, resulting in transfection efficiencies increased from 10-to-100-fold. Noteworthy, these results were obtained transfecting three cell lines and hard-to-transfect primary cells. CONCLUSIONS: In this work, we focus on a new technology to enhance the intracellular delivery of NAs and improve the transfection efficiency of non-viral vectors through priming adherent cells with a short vibrational stimulation. This study paves the way for capitalizing on physical cell stimulation(s) to significantly raise the effectiveness of gene delivery vectors in vitro and ex vivo.


Subject(s)
COVID-19 , Polymers , COVID-19 Vaccines , Gene Transfer Techniques , Humans , Polyethyleneimine , Transfection
7.
J Control Release ; 352: 970-993, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2120446

ABSTRACT

With the rapid development of biopharmaceuticals and the outbreak of COVID-19, the world has ushered in a frenzy to develop gene therapy. Therefore, therapeutic genes have received enormous attention. However, due to the extreme instability and low intracellular gene expression of naked genes, specific vectors are required. Viral vectors are widely used attributed to their high transfection efficiency. However, due to the safety concerns of viral vectors, nanotechnology-based non-viral vectors have attracted extensive investigation. Still, issues of low transfection efficiency and poor tissue targeting of non-viral vectors need to be addressed. Especially, pulmonary gene delivery has obvious advantages for the treatment of inherited lung diseases, lung cancer, and viral pneumonia, which can not only enhance lung targeting and but also reduce enzymatic degradation. For systemic diseases therapy, pulmonary gene delivery can enhance vaccine efficacy via inducing not only cellular, humoral immunity but also mucosal immunity. This review provides a comprehensive overview of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. First of all, the characteristics and therapeutic mechanism of DNA, mRNA, and siRNA are provided. Thereafter, the advantages and challenges of pulmonary gene delivery in exerting local and systemic effects are discussed. Then, the inhalation dosage forms for nanoparticle-based drug delivery systems are introduced. Moreover, a series of materials used as nanocarriers for pulmonary gene delivery are presented, and the endosomal escape mechanisms of nanocarriers based on different materials are explored. The application of various non-viral vectors for pulmonary gene delivery are summarized in detail, with the perspectives of nano-vectors for pulmonary gene delivery.


Subject(s)
COVID-19 , Nanoparticles , Humans , COVID-19/therapy , Gene Transfer Techniques , Transfection , Genetic Vectors/genetics , Lung
8.
Viruses ; 14(10)2022 09 30.
Article in English | MEDLINE | ID: covidwho-2066551

ABSTRACT

Molecular therapies exploiting mRNA vectors embody enormous potential, as evidenced by the utility of this technology for the context of the COVID-19 pandemic. Nonetheless, broad implementation of these promising strategies has been restricted by the limited repertoires of delivery vehicles capable of mRNA transport. On this basis, we explored a strategy based on exploiting the well characterized entry biology of adenovirus. To this end, we studied an adenovirus-polylysine (AdpL) that embodied "piggyback" transport of the mRNA on the capsid exterior of adenovirus. We hypothesized that the efficient steps of Ad binding, receptor-mediated entry, and capsid-mediated endosome escape could provide an effective pathway for transport of mRNA to the cellular cytosol for transgene expression. Our studies confirmed that AdpL could mediate effective gene transfer of mRNA vectors in vitro and in vivo. Facets of this method may offer key utilities to actualize the promise of mRNA-based therapeutics.


Subject(s)
Adenoviridae Infections , COVID-19 , Humans , Adenoviridae/genetics , Genetic Vectors/genetics , Gene Transfer Techniques , Polylysine , RNA, Messenger/genetics , RNA, Messenger/metabolism , Pandemics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Biology
9.
Methods Mol Biol ; 2573: 77-87, 2022.
Article in English | MEDLINE | ID: covidwho-2007118

ABSTRACT

Modified mRNA (modRNA) is a safe and effective vector for gene-based therapies. Notably, the safety of modRNA has been validated through COVID-19 vaccines which incorporate modRNA technology to translate spike proteins. Alternative gene delivery methods using plasmids, lentiviruses, adenoviruses, and adeno-associated viruses have suffered from key challenges such as genome integration, delayed and uncontrolled expression, and immunogenic responses. However, modRNA poses no risk of genome integration, has transient and rapid expression, and lacks an immunogenic response. Our lab utilizes modRNA-based therapies to promote cardiac regeneration following myocardial infarction and heart failure. We have also developed and refined an optimized and economical method for synthesis of modRNA. Here, we provide an updated methodology with improved translational efficiency for in vitro and in vivo application.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/therapy , Gene Transfer Techniques , Genetic Therapy/methods , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Wiley Interdiscip Rev Nanomed Nanobiotechnol ; 14(1): e1759, 2022 01.
Article in English | MEDLINE | ID: covidwho-1966114

ABSTRACT

Natural lipid molecules are an essential part of life as they constitute the membrane of cells and organelle. In most of these cases, the hydrophobicity of natural lipids is contributed by alkyl chains. Although natural lipids with a nonfatty acid hydrophobic backbone are quite rare, steroids and isoprenoids have been strong candidates as part of a lipid. Over the years, these natural molecules (steroid and isoprenoids) have been used to make either lipid-based nanoparticle or functionalize in such a way that it could form nano assembly alone for therapeutic delivery. Here we mainly focus on the synthetic functionalized version of these natural molecules which forms cationic liposomal nanoparticles (LipoNPs). These cationic LipoNPs were further used to deliver various negatively charged genetic materials in the form of pDNA, siRNA, mRNA (nucleic acids), and so on. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures.


Subject(s)
Nanoparticles , Terpenes , Gene Transfer Techniques , RNA, Messenger , RNA, Small Interfering , Steroids
11.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1928572

ABSTRACT

Sleeping Beauty (SB) is the first DNA transposon employed for efficient transposition in vertebrate cells, opening new applications for genetic engineering and gene therapies. A transposon-based gene delivery system holds the favourable features of non-viral vectors and an attractive safety profile. Here, we employed SB to engineer HEK293 cells for optimizing the production of a chimpanzee Adenovector (chAd) belonging to the Human Mastadenovirus C species. To date, chAd vectors are employed in several clinical settings for infectious diseases, last but not least COVID-19. A robust, efficient and quick viral vector production could advance the clinical application of chAd vectors. To this aim, we firstly swapped the hAd5 E1 with chAd-C E1 gene by using the CRISPR/Cas9 system. We demonstrated that in the absence of human Ad5 E1, chimp Ad-C E1 gene did not support HEK293 survival. To improve chAd-C vector production, we engineered HEK293 cells to stably express the chAd-C precursor terminal protein (ch.pTP), which plays a crucial role in chimpanzee Adenoviral DNA replication. The results indicate that exogenous ch.pTP expression significantly ameliorate the packaging and amplification of recombinant chAd-C vectors thus, the engineered HEK293ch.pTP cells could represent a superior packaging cell line for the production of these vectors.


Subject(s)
COVID-19 , Pan troglodytes , Adenoviridae/genetics , Animals , DNA Transposable Elements/genetics , Gene Transfer Techniques , Genetic Vectors/genetics , HEK293 Cells , Humans , Pan troglodytes/genetics
12.
J Mol Med (Berl) ; 100(6): 875-901, 2022 06.
Article in English | MEDLINE | ID: covidwho-1858961

ABSTRACT

Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20-42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. KEY MESSAGES: First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.


Subject(s)
COVID-19 , Gene Transfer Techniques , Adenoviridae/genetics , COVID-19 Vaccines , Genetic Therapy/methods , Genetic Vectors/genetics , Humans
13.
Sci Rep ; 12(1): 5424, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1768856

ABSTRACT

The development of mouse models of human disease and synthetic biology research by targeted transgenesis of large DNA constructs represent a significant genetic engineering hurdle. We developed an efficient, precise, single-copy integration of large transgenes directly into zygotes using multiple mouse genetic backgrounds. We used in vivo Bxb1 mediated recombinase-mediated cassette exchange (RMCE) with a transgene "landing pad" composed of dual heterologous Bxb1 attachment (att) sites in cis, within the Gt(ROSA)26Sor safe harbor locus. RMCE of donor was achieved by microinjection of vector DNA carrying cognate attachment sites flanking the donor transgene with Bxb1-integrase mRNA. This approach achieves perfect vector-free integration of donor constructs at efficiencies > 40% with up to ~ 43 kb transgenes. Coupled with a nanopore-based Cas9-targeted sequencing (nCATS), complete verification of precise insertion sequence was achieved. As a proof-of-concept we describe the development of C57BL/6J and NSG Krt18-ACE2 models for SARS-CoV2 research with verified heterozygous N1 animals within ~ 4 months. Additionally, we created a series of mice with diverse backgrounds carrying a single att site including FVB/NJ, PWK/PhJ, NOD/ShiLtJ, CAST/EiJ and DBA/2J allowing for rapid transgene insertion. Combined, this system enables predictable, rapid development with simplified characterization of precisely targeted transgenic animals across multiple genetic backgrounds.


Subject(s)
Bacteriophages , COVID-19 , Animals , Bacteriophages/genetics , DNA , Gene Transfer Techniques , Genetic Background , Integrases/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred NOD , RNA, Viral , SARS-CoV-2
14.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1742489

ABSTRACT

The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells. This paper is devoted to the evaluation of the gene delivery ability of new synthesized gemini bis-pyridinium surfactants with six methylene spacers, both hydrogenated and fluorinated, in comparison with compounds with spacers of different lengths, previously studied. Results from MTT proliferation assay, electrophoresis mobility shift assay (EMSA), transient transfection assay tests and atomic force microscopy (AFM) imaging confirm that pyridinium gemini surfactants could be a valuable tool for gene delivery purposes, but their performance is highly dependent on the spacer length and strictly related to their structure in solution. All the fluorinated compounds are unable to transfect RD-4 cells, if used alone, but they are all able to deliver a plasmid carrying an enhanced green fluorescent protein (EGFP) expression cassette, when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) in a 1:2 ratio. The fluorinated compounds with spacers formed by six (FGP6) and eight carbon atoms (FGP8) give rise to a very interesting gene delivery activity, greater to that of the commercial reagent, when formulated with DOPE. The hydrogenated compound GP16_6 is unable to sufficiently compact the DNA, as shown by AFM images.


Subject(s)
DNA/genetics , Gene Transfer Techniques , Methane/chemistry , Pyridinium Compounds/chemistry , Surface-Active Agents/chemistry , Transfection/methods , A549 Cells , Cell Survival , DNA/chemistry , DNA/metabolism , Genetic Therapy/methods , Halogenation , Humans , Hydrogenation , Methane/metabolism , Microscopy, Atomic Force , Molecular Structure , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Pyridinium Compounds/metabolism , Reproducibility of Results , Surface-Active Agents/metabolism
15.
Adv Drug Deliv Rev ; 183: 114170, 2022 04.
Article in English | MEDLINE | ID: covidwho-1697560
16.
J Gene Med ; 24(5): e3415, 2022 05.
Article in English | MEDLINE | ID: covidwho-1669502

ABSTRACT

Gene therapy has emerged as a promising tool for treating different intractable diseases, particularly cancer or even viral diseases such as COVID-19 (coronavirus disease 2019). In this context, various non-viral gene carriers are being explored to transfer DNA or RNA sequences into target cells. Here, we review the applications of the naturally occurring amino acid histidine in the delivery of nucleic acids into cells. The biocompatibility of histidine-enhanced gene delivery systems has encouraged their wider use in gene therapy. Histidine-based gene carriers can involve the modification of peptides, dendrimers, lipids or nanocomposites. Several linear polymers, such as polyethylenimine, poly-l-lysine (synthetic) or dextran and chitosan (natural), have been conjugated with histidine residues to form complexes with nucleic acids for intracellular delivery. The challenges, opportunities and future research trends of histidine-based gene deliveries are investigated.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/therapy , Gene Transfer Techniques , Histidine/genetics , Humans , Transfection
17.
Biomed Pharmacother ; 145: 112385, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1565522

ABSTRACT

Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.


Subject(s)
COVID-19/prevention & control , Chronic Disease/prevention & control , Chronic Disease/therapy , Genetic Therapy/methods , Immunotherapy/methods , Pandemics/prevention & control , RNA, Messenger/chemistry , SARS-CoV-2/immunology , Vaccines, Synthetic , mRNA Vaccines , Biological Availability , Drug Carriers , Forecasting , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/therapeutic use , Humans , Immunotherapy, Active , Nanoparticle Drug Delivery System , RNA Stability , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , RNA, Messenger/therapeutic use , SARS-CoV-2/genetics , Vaccine Development , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
19.
Bioelectrochemistry ; 144: 107994, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1499650

ABSTRACT

Gene therapies are revolutionizing medicine by providing a way to cure hitherto incurable diseases. The scientific and technological advances have enabled the first gene therapies to become clinically approved. In addition, with the ongoing COVID-19 pandemic, we are witnessing record speeds in the development and distribution of gene-based vaccines. For gene therapy to take effect, the therapeutic nucleic acids (RNA or DNA) need to overcome several barriers before they can execute their function of producing a protein or silencing a defective or overexpressing gene. This includes the barriers of the interstitium, the cell membrane, the cytoplasmic barriers and (in case of DNA) the nuclear envelope. Gene electrotransfer (GET), i.e., transfection by means of pulsed electric fields, is a non-viral technique that can overcome these barriers in a safe and effective manner. GET has reached the clinical stage of investigations where it is currently being evaluated for its therapeutic benefits across a wide variety of indications. In this review, we formalize our current understanding of GET from a biophysical perspective and critically discuss the mechanisms by which electric field can aid in overcoming the barriers. We also identify the gaps in knowledge that are hindering optimization of GET in vivo.


Subject(s)
Electroporation , Gene Transfer Techniques , Genetic Therapy , Animals , COVID-19/prevention & control , Electroporation/instrumentation , Electroporation/methods , Equipment Design , Gene Transfer Techniques/instrumentation , Genetic Therapy/methods , Humans , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/therapeutic use , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/administration & dosage , mRNA Vaccines/genetics , mRNA Vaccines/therapeutic use
20.
Adv Drug Deliv Rev ; 179: 114007, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482395

ABSTRACT

In recent years, nucleic acid-based therapeutics have gained increasing importance as novel treatment options for disease prevention and treatment. Synthetic messenger RNAs (mRNAs) are promising nucleic acid-based drugs to transiently express desired proteins that are missing or defective. Recently, synthetic mRNA-based vaccines encoding viral proteins have been approved for emergency use against COVID-19. Various types of vehicles, such as lipid nanoparticles (LNPs) and liposomes, are being investigated to enable the efficient uptake of mRNA molecules into desired cells. In addition, the introduction of novel chemical modifications into mRNAs increased the stability, enabled the modulation of nucleic acid-based drugs, and increased the efficiency of mRNA-based therapeutic approaches. In this review, novel and innovative strategies for the delivery of synthetic mRNA-based therapeutics for tissue regeneration are discussed. Moreover, with this review, we aim to highlight the versatility of synthetic mRNA molecules for various applications in the field of regenerative medicine and also discuss translational challenges and required improvements for mRNA-based drugs.


Subject(s)
Drug Delivery Systems , RNA, Messenger/administration & dosage , Regeneration , Regenerative Medicine/trends , Animals , COVID-19 Vaccines/administration & dosage , Gene Transfer Techniques , Genetic Therapy , Humans , RNA, Messenger/immunology
SELECTION OF CITATIONS
SEARCH DETAIL